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Abstract

The problem of transforming nonlinear systems to linear systems
is receiving much attention in the literature. 1In this paper we pre-
sent necessary and sufficient conditions that a nonlinear control
system with output be equivalent to a linear control system with
linear output (which is controllable and observable). The conditions
depend on certain Lie derivatives of the output and can be verified
in a finite number of.steps. For simplicity we consider only the

single input, single output case.
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1. Introduction
The main problem of interest is to determine if a given non-
linear system with output is equivalent to a controllable and
observable linear system. For this paper we restrict to a real-

analytic single input, single output nonlinear system

x = £(x) + g(x)u
(1) '

Y = h(x)

with £(0) = 0. The first equation in (1) represents the dynamics,
the second the output. By equivalence we mean there exists a
nonsingular smooth state space coordinate change on R near 0

so that (1) becomes

W = Aw + bv

z = Cw

a controllable and observable system. For this "state space
equivalence"” we take v = u. The conditions we derive involve a
finite number of Lie derivatives of the output function h(x),
in (1), and these appear as kernels in the (formal) Volterra
series of (1).

If we ignore the outputs in systems (1) and (2), the state
space equivalence problem is solved in [1] and (2]. 1Isidori (3]
also presents conditions under which the nonlinear system with
output exhibits linear input-output behavior.

Another type of equivalence that has received much attention
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in the literature is the feedback eguivalence (state space coord-
inate changes, nonlinear feedback, and input space coordinate
changes). The feedback equivalence problem for nonlinear systems
and linear systems is now well understood (see [4] and [5]) when

outputs are not considered. 1If outputs are added, then the feed-
back equivalence problem, where we wish to move (1) to a system
which has linear input-output behavior in some specified sense,
is examined in ([3],[6],[7) and [8].

In section 2 of this paper we introduce needed definitions

and notation. The third section contains our main results. Here

we present sufficient conditions involving Lie derivatives of the
output for system (1) so that (near the origin in Ifﬂ
(i) the system x = f(x) + g(x)u is feedback equivalent
tow = Aw + bv,
(ii) the system x = f(x) + g(x)u is state equivalent
to w = Aw + bv,
(iii) the input-output system (1) is state equivalént to
the input-output system (2). The sufficient conditions
here are also necessary.

Multi input, multi output versions of these results will appear

elsewhere.
For interesting results on the equivalence of nonlinear systems

(without inputs) to linear systems having output injection (also

without inputs) we refer to (9], (10], and [11).

lem where inputs are added is also considered, but the results are

more concerned with observer design than with equivalence conditions.

The observer design technique with inputs is related to the design

tecﬁnique without inputs.

In [11], the prob-



2. Definitions

If £ and g are c” vector fields on R", then the Lie bracket

is
[flg] ﬁ‘g X f
(this is the negative of the usual definition), where -g—)f(- and g%

are Jacobian matrices. Successive Lie brackets are defined by

(ad%,q) = g
(aalf,q) = [£,q)
(ad%f,q) = [£,(£,q9]]

(ad¥f,q) = (£, (ad*7lf,9)1.

Given a €~ function h and a ¢” vector field £, the Lie

derivative of h with respect to f is

th = <dh'f.> ’

where <+, +> denotes the duality between one forms and vector

fields. Then we let

Lg h = th

o
h
=
"

Lf(th) = L.L h




ther Lie derivatives like LgLé‘h can be defined.
Starting with system (1) and moving to system (2) through
equivalence, one assumption which we have indicated is that

system (2) be controllable and observable. To guarantee this,

for the remainder of the paper both of the sets {g,[f,9],...,

h-1

(adn-lf,g)} and {dh, 4L h,...,dLg h} are assumed to span R"

f
near the origin.

We also make use of the Lie derivative of a one form w with

respect to a vector field £

with * denoting transpose.
The three types of Lie derivatives are related by the

formula
(3) : LeCw,gD> = CLe(w),9> -, [£,9]12 .

Let h be a C~ function and g a c* vector field in some
neighborhood U of the origin in R®. If dh does not vanish at O,
there is an open set, also called U, containing 0 so that U is
foliated by the (n-1) dimensional level sets of h. Starting at
all initial points in the level set So of h through 0, we assume
that U consists of all solutions of x(t) = g(x(t)) for t in some
interval (-to,to),to > 0. For te (-to,to), let S, be the set of
all points x(t), where x(t) solves x(t) = g(x(t)) and x(0) eso.

We remark that U can be reduced, if necessary, in the proof

of the following result.
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Lemma 2.1. If Lgh is a constant in U, then for all te (-to,to),

St is a level set of h.

Proof. Since g is nonvanishing on U, coordinate changes exist

so that

Te]
]
O ¢« ¢« OO

L-
on U. 1If Lgh = 0 on U, then h is independent of X, since

<dh,g>= %h- = 0. Hence the integral curve of x = g(x(t)) through
n
any point in'st is actually contained in S¢-
oh

Suppose Lgh = Co» g ¥ 0, on U. Then §§; =CoonUand h
is linear in The level sets of h are given by x - h(xl,xz,
ceerX 4) =4, whefe d is a constant for each level set (d = 0 for
the level set through 0) and h has the obvious definition.

Since the solution of x(t) = g(x(t)) starting at any point
in So is X, = constant, X, = constant,...,X,_; = constant, x = t,
it is obvious that the flow maps the level sets as required. [ ]

The proof of the following lemma involves easy computations
and is left to the reader.
Lemma 2.2. The condition that Lgh is a constant on U is invari-
ant under npnsingular coordinate changes on R".

In addition to the assumption in this lemma, suppose also
that we are in a coordinate system so that g is a constant vector

field. We differentiate Lgh with respect to S with respect to

Xoreoos and with respect to x to find

Hg = 0,



where H is the n xn Hessian matrix

32h a2h

Bxl xl xn
) 22h

xn x1 axn J

Since g is nonvanishing, we have the determinant of H is
identically zero. This gives us the homogeneous real Monge-Ampere
equations [12]

det H = 0.

Moreover, g is contained in the Monge-Ampere foliation. If

g‘

-Oee + o oo1

then h must be linear in the X, variable, as indicated-in the

proof of Lemma 2.1.

We present definitions concerning equivalence of two systems.

By state equivalence we mean there exists a nonsingular coordinate

change on R* taking one system to the other. By feedback equiva-

lence we mean there exists a nonsingular transformation involving
state space coordinate changes, feedback, and coordinate changes

on the input space. As shown in [5] this can be viewed as a map




1 n+l (Lf systems (1) and (2) are considered, (x,u)

from ]Rn+ to R

space goes to (w,u)space).
3. Main Results
We examine conditions under which we can move from system (1)

to system (2). A simple example illustrates our approach to this

problem.

Example 3.1. Consider the nonlinear system

. 2 2
X, Xy X4 + 2(x2 - X4 )x3 0

(4) X, = X4 + 2x3 u = f(x) +gi(x)u
Xq 0 1l

2 2
Y = hi{x) = Xy = x, + 2x2x3 - Xy o+ Xy " Xy

on a neighborhood 6f 0 in:R3. The state space coordinate change

w, =X, - (x, - xiz)z
1l 1 2 3
2
W3 = X3
takes (4) to (with v = u)
wl W, 0
(6) ' Wy |= [ w3 | * 0 v
W3 0 1




a linear system with linear output. Thus we have that (4) is
state equivalent to (6).

An easy calculation shows that each of the sets
{g,[£f,9]), (adzf,g)} and {dh, deh, dL;Zh} for system (4) are
linearly independent. This is equivalent to the fact that the
linear system (6) is controllable and observable.

Next we examine computations involving the output function
Y = h(x) in (4). It can be shown that the Lie derivatives
prove later (for the general case) that this implies

hi(x), k = 0,1,2,3,4,5; are all constants for x near 0. We

[(ad®f,g), (ad®f,g)]1 = 0

for 0 < s, ¢t < 3, and the dynamics in (4) (without output) are
equivalent to the dynamics in (6) (see [1] and [2]). The coordi-
nate changes to move from (4) tc (6) are exactly those given in
(5) , under which the output in system (6) is linear.

Given system (1) our main concerns are to determine suffici-
ent conditions so that the results (i), (ii), and (iii) as stated
in the introduction hold.

Theorem 3.1. (i) If there exist constants Ck so that Lngch

= Ck' k =0,1,..., 2n -~ 3 on a neighborhood of the origin in:mP,
then the dynamics % = £(x) + g(x)u in the nonlinear system (1)
are feedback equivalent to the dynamics w = Aw + bv in (2).

k
(ii) 1If there exist constants Cyx so that LgLf h = Cp, k

=0, 1,..., 2n - 1 on a neighborhood of the origin in ®R®, then




f(x) + g(x)u is state equivalent to w = Aw + bv.

(iii) 1If there exist constants Ck so that LgLé{h = Ck’

e
"

k =0, 1,..., 2n~-1 on a neighborhood of the origin in mp, then
the input-output nonlinear system (1) is state equivalent to the
input-output linear system (2). Moreover, the converse is also
true.

We remark that (iii) obviously implies (ii), but it is natural
that (ii) be proved before (iii).
. Proof. Since the conditions L L)(h = C, are invariant under state

g £ k
space coordinate changes by Lemma 2.2, we define new coordinates

Tl = h(x)
T2 = th(x)
(7) .

mo o= Rl
.Ln Lf h(X) .

In these T coordinates, which for simplicity we now call x coordi-

nates, equations (1) become

%] ) 91
(8) . = . + . u
x.n-l xn gn-l
an i Lfn(xlcleoootxn)d Lgn i
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Now

L h = Co implies g9 = C

g 0

Lgth = Cl implies g, = C1

h=¢C , implies 9, = C

n-l
LgLf n-1°
We also have
n 2o
LL. h=C_ = — C.
and
- - - -
G 51
C2 C,
[flg] = . = .
Cn-1 Cn-1
n Bfn c
2 ox ci-l n )
| i=1 i i N i
Applying the definitions of Lie derivatives and equation (3)
we find

n n
L[f,g]Lf h= <de h, [flg]>

= L (LS h),g>- LLALS h, o)

n
={dL.Llh,g> - LKL h,od
= <den+lhcg> = Lf<denhlg>

_ n+l. _ n
= LgL.f h LngLf h




But
n —-—
LgLf h = Cn
yields
n, _ n+l
Lig,q1lt h = Lgbg h =Chyy
Now
of
n n _
Pie,gibe P T UL a G T Gan
and
<,
C3
(ad’t,q) = |-
Cn
fn+LJ .
Similarly,
n. _ n+l. n+2. _
and
of
! 3% Cise1 = Cnaz-
i=1 °%i n
Hence
C3
¢4
(ad’t,g) = | .
Cn+1
fn+1_ ¢

11

n+2



12

Continuing in this way and assuming the hypothesis in (i) holds
we have

-1 - = =

CO Cl 7 Cn-z
¢, C, Ch-1
. _ . n-2 P

g = . . [£,9) = . y ... (ad” “f,q9) = .
Cn-2 Cn-l Czn_4
Cn-1 n 2n-3

These vector fields form an involutive set and the conclusion in

(i) is valid by results on feedback equivalence in [5].

2n-2 2n-1 _ '
i I.gLf = Cy,.p &nd LgLf = C,,.; @also hold then
- - -
n-1 Cn ]
cn n+l
(adn-lf,g) = : and (adnf,g) = . .
2n-3 c2n-2
| C2n-2 | Can-1 |
Therefore

[(ad%f,q), (ad%f,g)] = O

for all 0 < s,t < n, and (ii) is proved by results in [2].

At this point we have shown that
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<dfn’g> = Cn
(9) df, l£,91>=C_

n-1
<dfn,(ad £f,9)> = C2n-1'

Since g, [f,9],..., and (ad"!

f,g) are constant vector fields,
differentiation of each equation in (9) with respect to Xq s with

respect to Koreoos and with respect to X, yields

22
§§;§§;- 2= 0.
2
£
n . . .
Here 5;;;;; denotes the Hessian matrix of fn and £ is any vector

field in {g,[f,g],...,(adn-lf,g)}. Because this set of vectors is
linearly independent set we must have that fn is linear in
xl,xz,...,xn (recall £(0) = 0). Alternatively, we have a full
Monge-Amperé foliation implying fn is linear. Hence (1) is then
a linear system with linear output.

The necessity in (iii) is trivial since the conditions

LgLéch = Ck, k =0, 1,..., 2n-1 hold for a linear system and are

invariant under coordinate changes on R". [ ]
In [3) Isidori introduces the Lie derivatives of an input-
output nonlinear system (1) in (formal) Volterra series.

t
(10) y(t) = w(O)(t,x) + [ w(l)(t,rl,x)ui(11)+...,

0
where




o k
w0 = ) 1 e 5
k=0 °
k1 k2
) k k (t-1,) T
v = 1 1 gy ey —2— 2
i ky,K,=0 Ky ! k!

He ;emarks that if the LgLfkh(x) are independent of x for all k > 0,
then the input-dependent part of the response of the nonlinear system
(1) is linear in the input. Putting conditions on (1) so that the
resulting linear system (2) is controllable and observable, we have
shown that only the first 2n of LgLfkh need to be considered. 1In
addition, the Volterra series collapses to the variation of constants
formula in our case.

Following Isidori (3], an interesting problem for (l) is to

determine conditions under which there are functions a and B so that

k
LBgL (f+ga)

h(x) are independent of x for k = 0,1,..., 2n-1. For the
dynamics in (1) to be feedback equivalent to the dynamics in (2) it
is necessary that the set'{g,[f,gl,(adzf,g),...,(adn-zf,g)} be invol-
utive (see [4] or [5]). One way in which the transformation from a
nonlinear system to a linear system is accomplished is by finding

c« and B8, and then following with state space coordinate changes [13].
Then all we have to ask in order for the input-output nonlinear
system (1) to be feedback equivalent to the input-output linear
system (2) is & simple question. Do the o and B satisfy the condi-
tions that LBQL§+ag
course this requires finding e and B, which can be quite difficult

h(x), k=0,1,...,2n-1 are independent of x? Of

(if not impossible) in many cases. Moreover, it is desirable to

determine necessary and sufficient conditions depending only on
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f, g and h and not on a and B. liowever, this may not be possible
k .
since the conditions Lgth(x) = constant, k > 1, are not invariant

under feedback;

George Meyer's [14] highly successful applications of nonlinear
transformation theory to automatic control of aircraft can be viewed
in light of this paper. Our discussion is restricted to a single-~
input, single-output case. Meyer's [14) mathematical model is block
triangular, i.e.

Xy = fl(xl,xz)

X, = fz(xl,xz,x3)
(11)

x = fn-l(xl'x2""'xn)
X, = fn(xl,xz,...,xn) + U

with output y = X .

Using the transformation theory in [14] we obtain the linear

system
Wy = Wy
Wy = V3
(12)
.=

with output z =V, = X, 8 linear system with linear output. We can
easily calculate the ¢ and B so the conditions mentioned in the pre-
ceding paragraph are satisfied. We remark that system (12) has no
zeros, and is thus a special case. The general theory of this page

allows for zeros, as illustrated by éxample (4) .
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The multi-input, multi-output theory is a part of the thesis

of Mladen Luksic.
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